skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Hui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The stable isotope ratio of dissolved inorganic carbon (δ13C‐DIC) is a valuable tracer for investigating carbon cycling in aquatic environments. However, its potential remains underutilized due to limited data availability. Fewer than 15% of cruise samples are analyzed forδ13C‐DIC, as isotope analysis using isotope ratio mass spectrometry is labor‐intensive and restricted to onshore laboratories. We present over 3500δ13C‐DIC measurements from the 2023 Global Ocean Ship‐based Hydrographic Investigations Program A16N cruise in the North Atlantic. Notably, three‐quarters of these measurements were conducted onboard using a CO2extraction device coupled with cavity ring‐down spectroscopy, a more efficient and cost‐effective method. This extensive dataset providesδ13C‐DIC values with spatial resolution comparable to other ocean carbonate chemistry and biogeochemical parameters. This dataset supports improved quantification of anthropogenic CO2uptake and storage, and may facilitate the development of algorithms to estimateδ13C‐DIC in under sampled regions. 
    more » « less
  2. Abstract The southeastern Atlantic Ocean is a crucial yet understudied region for the ocean absorption of anthropogenic carbon (Canth). Data from the A12 (2020) and A13.5 (2010) cruises offer an opportunity to examine changes in dissolved inorganic carbon (DIC), its stable isotope (δ13C), and Canthover the past decade within a limited region (1∼3°E, 32∼42°S). For the decade of 2010–2020, Canthinvasion was observed from the sea surface down to 1,200 m based on both DIC and δ13C data. The mean Canthincrease rate (1.08 ± 0.26 mol m−2 yr−1) during this period accelerated from 0.87 ± 0.05 mol m−2 yr−1during the previous period (1983/84–2010). The δ13C‐based Canthincrease closely matches the DIC‐based estimation below 500 m but is 26% higher in the upper ocean. This discrepancy is likely due to δ13C's longer air‐sea exchange timescale, seasonal variability in the upper ocean, and the chosen ratio of anthropogenically induced changes in δ13C and DIC. Finally, column inventory changes based on the two methods also exhibit very similar mean Canthuptake rates. The paired DIC concentration and stable isotope dataset may enhance our ability to constrain Canthaccumulation and its controlling mechanisms in the ocean. 
    more » « less
  3. Abstract The genome of an organism is inherited from its ancestor and continues to evolve over time, however, the extent to which the current version could be altered remains unknown. To probe the genome plasticity ofSaccharomyces cerevisiae, here we replace the native left arm of chromosome XII (chrXIIL) with a linear artificial chromosome harboring small sets of reconstructed genes. We find that as few as 12 genes are sufficient for cell viability, whereas 25 genes are required to recover the partial fitness defects observed in the 12-gene strain. Next, we demonstrate that these genes can be reconstructed individually using synthetic regulatory sequences and recoded open-reading frames with a “one-amino-acid-one-codon” strategy to remain functional. Finally, a synthetic neochromsome with the reconstructed genes is assembled which could substitutechrXIILfor viability. Together, our work not only highlights the high plasticity of yeast genome, but also illustrates the possibility of making functional eukaryotic chromosomes from entirely artificial sequences. 
    more » « less
  4. Hemorrhage is a prime cause of death in civilian and military traumatic injuries, whereby a significant proportion of death and complications occur prior to paramedic arrival and hospital resuscitation. Hence, it is crucial to develop hemostatic materials that are able to be applied by simple processes and allow control over bleeding by inducing rapid hemostasis, non-invasively, until subjects receive necessary medical care. This tutorial review discusses recent advances in synthesis and fabrication of degradable hemostatic nanomaterials and nanocomposites. Control of assembly and fine-tuning of composition of absorbable ( i.e. , degradable) hemostatic supramolecular structures and nanoconstructs have afforded the development of smart devices and scaffolds capable of efficiently controlling bleeding while degrading over time, thereby reducing surgical operation times and hospitalization duration. The nanoconstructs that are highlighted have demonstrated hemostatic efficiency pre-clinically in animal models, while also sharing characteristics of degradability, bioabsorbability and presence of nano-assemblies within their compositions. 
    more » « less
  5. Transition metal dichalcogenides (TMDs) have attracted much interest in recent years due to their emerging material properties. In monolayer TMDs, such as MoS2, extreme quantum confinement is achieved in the monolayer limit. Although monolayer TMDs represent an ideal platform to explore excitonic physics using ultrafast spectroscopy, this exploration is currently limited by confusion regarding the origin of certain spectral features, including the below-bandgap PIA feature observed in pump-probe experiments. In this work, we document an absence of PIA features immediately after photoexcitation, indicating a lack of strong optically-induced biexciton formation. Below-bandgap PIA features are observed to grow in with a time constant of 110 ± 10 fs, indicative of other factors responsible for their origin. These results indicate that optically-induced biexciton formation is most likely not responsible for the previously observed PIA features in MoS2 monolayers. 
    more » « less